

Steels

A large, high-contrast image of a polished metal flange occupies the right side of the page. The flange has a central threaded hole with a lock washer and a raised circular seal. The surrounding metal is highly reflective, showing bright highlights and deep shadows. The background is a blurred industrial setting with a yellow and orange structure visible on the left.

TG13

ALEXAR

Remelted hot work tool steel optimized for aluminium extrusion and die casting

TGE13 ALEXAR;

- is a 5% Cr steel produced by a remelting process that ensures an excellent level of cleanliness and homogeneity.
- has a good wear resistance associated with a good toughness.
- has a very good polishability, is good for texturing.
- can also be welded and exhibits good machinability.
- can be hardened up to 54 HRC after the heat treatment and the recommended working hardness is 42 - 50 HRC.
- has a very good suitability for surface treatments such as gas, ionic or salt bath nitriding, as well as PVD or CVD coatings.

Applications

TGE13 ALEXAR is an excellent solution for metal pressure casting molds (e.g. *automobile engine cylinder bodies, cylinder cover, gearbox shell molds*).

TGE13 ALEXAR can be used for hot extrusion molds and especially for hot extrusion aluminum profiles.

TGE13 ALEXAR can also be used for support blocks, bolster, stamp, staples, sealed cores, secondary areas in die casting dies such as biscuit and runner, shot Sleeve in HPDC any type of press forging applications.

TGE13 ALEXAR can also be used for plastic molds fillers with abrasive polymers or fillers (*glass fibers*).

TGE13 ALEXAR is suitable for high wear resistant and hard (48 HRC) dies for large production number, for upper and also bottom dies in low pressure die casting, gravity molds, rollers... and all the tools requiring good hot wear resistance

Main properties

- Good hot wear and crack resistance
- Good tenacity and ductility
- Almost isotropic
- Good polishability
- Good hot strength and tempering back resistance
- High hardenability
- Suitable for surface treatments with a good stability

Chemical composition (*typical*)

C	Mn	Si	P	S	Cr	Mo	V
0.38	0.37	1.00	< 0.020	< 0.005	5.15	1.35	1.00

Designation

Werkstoff Nr	ISO	China GB	JIS Japan	UK	AISI USA	Russia Gost	AFNOR	Other / Special
1.2344 ESR	X40CrMoV5-1	4Cr5MoSiV1	SKD61	BH13 mod ESR	H13 mod ESR	4KH5MF1S	-	NADCA Grade A

Structure

The structure of the TGE13 ALEXAR is fine and homogeneous without precipitation or alignments of carbides.

Micro cleanliness: as per ASTM 45 method A it is at most equal to: fine series: A1 - B1.5 - C1 - D2 / thick: A0.5 - B1 - C0.5 - D1.5 or DIN 50602; K4 max 20
Segregation: According to NADCA # 207 - 2016, AS1 - AS9 (annealed conditions)

Micro homogeneity: According to SEP 1614, SA1 - SA4; SB1 - SB4

Hardness at the time of delivery

Annealed for 170-230 HB.

Typical mechanical properties in hardened conditions (*results from internal tests not indicated on the certificates*)

TS MPa	YS 0.2% MPa	Elongation %	Hardness HRC	KV J 20°C
1600	1400	10	48	≥ 12
1450	1250	11	44	≥ 14

Note on toughness

Impact energy (*average on three reading samples, measured on unnotched samples of 7*10*55 mm (in the transverse direction at mid thickness), heat treated to HRC 45+/-2*,

The impact energy is:

- On round bar: transversal: min 220 J; longitudinal: min 220 J
- On flat bar / Block external zone: min 220 J; Core zone: min 180 J

Physical properties

Temperature	20°C	200°C	400°C	800°C
Volumic mass kg/m ³	7800	7770	7700	7540
Young Modulus N/mm ²	206000	200000	186000	177000
Thermal conductivity W/m.K	25	26	28	31
Coefficient of linear expansion 10 ⁻⁶ /K	10.5	11.4	11.7	12.4

Heat treatment

SOFT ANNEALING

Temperature: 820 - 860°C, duration 1h + 1h for 25mm thickness. slow cooling in the furnace (10 to 20°C/h). The atmosphere in the furnace must be reducing to avoid decarburization of the steel.

STRESS RELIEVING

After machining, it is recommended to perform stress relieving at 650°C for a minimum of 2 hours, followed by slow cooling in the furnace to 450°C.

AUSTENITIZATION

In order to avoid any risk of cracking it is recommended to preheat in 2 steps.

- 1st preheating step: temperature: 650°C time: 30 s/mm of thickness
- 2nd preheating step: temperature: 850°C time: 30 s/mm of thickness

Recommended austenitizing temperature: 1020 - 1060°C. The holding time should not be too long to avoid a risk of grain coarsening and a loss of toughness. It is recommended to keep the part at the austenitizing temperature 30 minutes per inch of thickness as soon as the temperature of the surface reach the austenitization temperature.

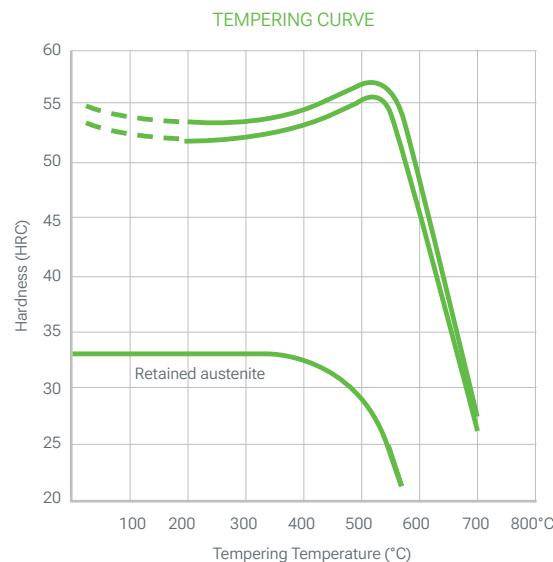
QUENCHING MEDIUM

Oil at 80°C, vacuum (*pressure > 6 bars*), salt bath 500 - 550°C.

To ensure good toughness, treatment with oil or salt bath is preferable.

SUB ZERO TREATMENT

For parts used in cold work applications that need to have high dimensional stability and to increase wear resistance without reducing toughness, it is recommended to perform a subzero treatment at a temperature between -70°C and -190°C for 1 hour for 25 mm of thickness of the part.


The temperature range from -70°C up to -120°C (*named cold treatment of steel*) leads to the complete transformation of austenite into martensite and as a consequence to better stability associated with improved hardness and better wear resistance and the temperature range from -135°C down to -190°C (*named cryotreatment of steel*) leads also to the complete transformation of austenite and also the precipitation of ultrafine carbides improving a lot the wear resistance without modification of the toughness. This treatment is optional for common applications.

TEMPERING

To ensure a minimum residual austenite rate as well as greater tool stability, it is essential to perform a double tempering. Each tempering is followed by

a cooling under 100°C.

Each tempering time must be at least equal to 1h + 1h for 25mm of thickness of the treated part (*equivalent thermal thickness*).

Surface treatment

NITRIDING

TGE13 ALEXAR can be nitrided at temperatures less than or equal to 20°C below tempering temperatures without risk of deterioration of the mechanical characteristics.

With gas nitriding at 520°C (25 h) the surface hardness is 1120 HV1 with a diffusion layer of 0.2 mm.

PVD, CVD

TGE13 ALEXAR is suitable for all kinds of PVD and CVD treatment as soon as the treatment temperature is 30°C lower than the last tempering temperature.

Polishing

TGE13 ALEXAR is perfectly suitable for polishing in the treated state and can be used for applications requiring a sufficient level of polish for transparent parts ($R_t \leq 3 \mu m$, CNOMO level 1, Rugotest N4).

Optimal polishing is achieved by performing consecutive steps with similar roughness and stopping each step as soon as the last scratch from the previous step disappears.

Texturing

TGE13 ALEXAR is suitable for chemical or laser texturing.

Machining

The machining parameters below are given for information only and must be adapted according to the equipment and usual machining conditions.

TURNING

	Carbide tool		HSS tool
	Rough machining	Finishing	Finishing
Cutting speed m/min	130 - 170	170 - 220	17 - 22
Feed mm/r	0.15 - 0.3	0.1 - 0.15	0.1 - 0.3
Depth of cut mm	2 - 3	0.5 - 1.5	0.5 - 2

MILLING: SURFACING

	Milling with carbide tools		Solid tool
	Rough machining	½ Finishing	Finishing
Cutting speed m/min	160 - 180	180 - 200	210 - 280
Feed mm/r	0.40	0.4 - 0.35	0.10 - 0.05
Depth of cut mm	1 - 2.5	1 - 1.5	1 - 0.5

DRILLING: HSS TWIST DRILL

Drill diameter mm	Cutting speed m/min	Feed mm/t
< 5	13 - 15	0.05 - 0.15
5 - 10	13 - 15	0.15 - 0.20
10 - 15	13 - 15	0.20 - 0.25
15 - 20	13 - 15	0.25 - 0.30

DRILLING: CARBIDE DRILL

	Carbide type		
	Indexable insert	Solid carbide	Carbide tip
Cutting speed m/min	160 - 180	100 - 130	55 - 80
Feed mm/t	0.05 - 0.10	0.10 - 0.25	0.15 - 0.25

FINE GRINDING

General indications for grinding wheels to be used on TGE13 ALEXAR in the heat treated condition.

Usually, rather soft vitrified aluminum oxide grinding wheels (*grades G for plane grinding to K for cylindrical grinding*) are used.

Particular attention will be paid to effective cooling of the surface during grinding to prevent degradation of the material surface.

ELECTRO-DISCHARGE MACHINING


TGE13 ALEXAR is also suitable for EDM machining (*wire or electrode*). Preferably, the machining will be carried out with a low current density and a high frequency in order to limit the thickness of the white layer as much as possible.

Then it is necessary to carry out a stress relieving at 25°C below the last tempering in order to reduce the level of residual stresses (*which could lead to a risk of cracking*) and to carry out a polishing to completely remove the white layer formed during the discharge machining process.

Welding

It is not recommended to weld TGE13 ALEXAR but if this is mandatory it could be welded either in the annealed condition (*better*) or in the heat treated condition.

- Method: TIG
- Feeder wire: AISI H11 (*in order to avoid any porosity it is recommended to preheat the wire at 105 - 115°C before welding*).
- Preheating: 350°C.
- Hold at 200°C during the welding operation with a maximum interpass temperature at 480°C. Slow cooling (*max 20°C/h*) after welding.
- Post treatment:
 - » In the treated state: tempering at 600°C with a tempering time at least equal to 1h + 1h for 25 mm of thickness of the treated part (*equivalent thermal thickness*).
 - » In the annealed state: carry out a soft annealing under the usual conditions: temperature: 840 - 870 C, duration 1h + 1h for 25 mm of thickness. slow cooling in the furnace (*10 to 20°C/h*)

E info@tgsteels.com W www.tgsteels.com

Atlas Special Steels, s.l.
Avinguda de Can Sucarrats, 88-92,
08191 Rubí, Barcelona, Spain
+34 938 233 590
info@atlassteels.eu

OSS Canada Special Steel Inc
2384 Speers Rd, Oakville,
ON, Canada L6L 5M2
905-827-5888
sales@oss-material.ca

Atlas Special Steels Unipessoal, Lda
Rua do Antuã, nr. 64 pavilhão A e B
3720-558 Travanca - OAZ, Portugal
+351 256 245 497
info@atlassteels.eu

OSS Special Steel Inc.
2015 Mitchell Blvd Suite C
Schaumburg, IL 60193
(618) 426 - 6158
sales@oss-material.com

Five Star Special Steel Europe srl
Via Glenn Curtiss, 9, 25018
Montichiari BS, Italy
+39 030 524 3724
info@fsseuropel.com

TG Steels s.r.o.
Libušina 850, Dubí 272 03
Kladno, Czech Republic
info@tgsteels.com

GNG Consultoria
Rua Ituporanga, 210 - Born Retiro
Joinville - SC - 89222-430
+55 47 99669-5557
marcus@gngconsultoria.com.br

TG Middle East
Kocaeli KOBİ OSB, Köseler Mh.,
3. Cd., No: 15 Dilovası, Kocaeli, Türkiye
+90 262 728 11 67 (pbx)
info@tgme.com.tr